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We present a theoretical approach to charge-correlation attractions between like-charged membranes with
neutralizing counterions assumed to be localized to the membrane surface. In particular, we study the effect of
nonzero ionic sizes on the attraction by treating the membrane charges(both backbone charges and localized
counterions) as forming a two-dimensional ionic fluid of hard spheres of the same diameterD. Using a
two-dimensional Debye-Hückel approach to this system, we examine how ion sizes influence the attraction. We
find that the attraction gets stronger as surface charge densities or counterion valency increase, consistent with
long-standing observations. Our results also indicate a nontrivial dependence of the attraction on separationsh:
The attraction is enhanced by ion sizes for intermediateh ranges, while it crosses over to the known
D-independent universal behavior ash→`; it remains finite ash→0, as expected for a system of finite-sized
ions.
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I. INTRODUCTION

Counterion-induced attractions between like charges are
ubiquitous in biology, as a large class of biological processes
rely on these attractions[1–5]. Some viruses use multivalent
counterions in their host cells to package their DNA, which
carries a negative charge in aqueous solution[1,2]. These
attractions are also responsible for the formation of bundles
of other kinds of stiff polyelectrolytes such as microtubules
and actin filaments[3], which are crucial to the mechanical
properties of living cells. Membrane adhesion can also be
promoted by multivalent counterions such as Mg2+ and Ca2+

[6].
Since the mean-field approach of Poisson-Boltzmann

theory always predicts repulsion between like charges, the
electrostatic mechanism behind these observations has been
a subject of intensive research in the past few decades, pro-
ducing a number of seemingly distinct theoretical approaches
[7–19]. In all these approaches, the attraction arises from
correlations between counterions, especially those in the
close proximity of their coions. The major difference be-
tween them lies in the way they capture ion correlations. For
example, an integral-equation method has been used to ac-
count for counterion-density correlations[8,9]. This ap-
proach relies on an approximation scheme, namely, a closure
for pair correlation functions, and often requires heavy nu-
merical analysis. In more analytical treatment[12,17], charge
fluctuations are captured at the Gaussian level. For un-
screened planar cases(e.g., charged bilayers in a low-salt
limit ), the electrostatic pressure shows universal power-law
behavior at large separations[9,10,12]: Psh/l→`d;P`

,−kBT/h3, whereh is the separation,kB is the Boltzmann
constant, andT is the temperature. Finallyl is the Gouy-
Chapmann length, a length scale within which most counte-
rions are localized[see the more precise definition ofl be-
low Eq. (2)]. This result is independent of surface charge

densities and counterion valency. In a low-temperature pic-
ture [16], the attraction is reminiscent of a strong charge
correlation that drives the system into an ionic crystal at zero
temperature and decays exponentially withh. There are some
variations of this approach[18,19], but they do not deviate in
spirit significantly from it. More recently, it has been shown
that a more complete theory should incorporate both kinds of
behavior[20,21]: the power-law pressure and the exponential
pressure. Depending on surface charge densities or tempera-
ture, the short-ranged, exponentially decaying pressure can
be dominant at short separations, but it should cross over to
the power-law pressure ash increases. Finally, strong-
coupling (SC) theory has been proposed that becomes as-
ymptotically exact in the strong-coupling limit(i.e., low tem-
peratures, high surface charge densities, and large counterion
valency) [22,23].

Despite all this effort, the problem of counterion-induced
attraction still remains challenging. Many existing(analyti-
cally tractable) theoretical approaches[4,7,9,11–19] rely on a
common approximation for charges: point charges. While
some aspects of nonzero ionic sizes were discussed in a more
numerical treatment in the literature(see, for example, Ref.
[9]), a more comprehensive picture is highly sought after. It
is also desirable to develop a more analytical approach that
will provide a more direct picture of how finite ionic sizes
influence the electrostatic attraction. The main purpose of
this paper is to discuss the effects of ionic sizes on the elec-
trostatic attraction between like-charged surfaces. Here we
do not attempt to further reconcile the discrepancy between
existing approaches. Instead we will develop two-
dimensional Debye-Hückel(DH) theory (i.e., linearized
Poisson-Boltzmann theory) for highly charged surfaces with
neutralizing counterions assumed to be localized to the
surface—delocalized counterions will not be taken into ac-
count. Here, both backbone charges and counterions are
modeled by hard spheres of the same diameterD as in the
restrict primitive model[27]. The main advantage of our
approach lies in that it provides a simple physical picture for
the attraction without being complicated by other competing
effects. We find that the effect of finiteD is dramatic: In*Corresponding author.
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contrast toP`, which is independent ofs (planar charge
densities) or Z (counterion valency), the DH pressure for
D.0 can be sensitive tos and gets stronger ass or Z
increases in magnitude(unlessh is too small). This is in-
triguing as it indicates that ionic sizes influence thes (or Z)
dependence of the pressure. Our results are consistent with
long-standing observations of stronger attractions for higher
s0 or larger Z [9,16,24,25]. Our results also indicate non-
trivial dependence of the attraction onh. While the attraction
reduces to the limiting pressureP` in the limit h→`, it
showsD dependence forh ranges of physical interest. The
attraction is enhanced by ionic sizes for moderately largeh
sh*5 Åd, but it approaches a finite value ash→0. The ionic
size enhances a charge polarity, leading to a stronger attrac-
tion unlessh is too small. On the other hand, the free energy
(per area) for D.0 is finite, leading to a finite attraction(per
area) ash→0. However, our approach may leave out strong
coupling between ions that becomes important at low tem-
peratures and can be considered as complementary to SC
theory [22,23].

II. MODEL AND INTERACTION FREE ENERGY

To be specific, we consider two parallel surfaces perpen-
dicular to thez axis, a distanceh apart. Each surface is as-
sumed to be negatively charged with the same backbone
charge densitys;−es0, with −e the electronic charge. For
sufficiently larges0 s.0d, the Gouy-Chapman lengthl, a
length scale beyond which each surface is neutralized, is
smaller than typical ion sizes. In this case, it is useful to
classify counterions into two subclasses[4,7]: “condensed”
and “free.” In this simplified picture, both backbone charges
and condensed counterions are approximated to lie in the
same plane of the surface—they give rise to in-plane charge
fluctuations that become correlated from one surface to the
other, leading to an attraction. For simplicity, we will not
include free(delocalized) counterions. Here, we adopt the so
called restricted primitive model[26,27] of ions and treat
both backbone charges and condensed counterions as hard
spheres of the same diameterD, carrying charge at the cen-
ter. As a result, the interaction between two chargesq andq8
separated by a distancer assumes the following form[27]:

Usrd = 5 `, r , D,

qq8

er
, r . D.6 s1d

Here the dielectric constante is assumed to be constant
throughout the system(thus suppressing dielectric disconti-
nuity) and will be taken to be that of water. Furthermore, we
assume that condensed counterions have the same valencyZ.
This is reasonable, since multivalent counterions are prefer-
entially adsorbed onto a highly charged surface[28].

In order to treat condensed counterions and backbone
charges on equal footing, we useZae to denote the charge on
the two different kinds of ions:Za=Z for counterions and
Za=−1 for backbone charges. The overall electric neutrality
then requiresoaZasa=0 [29] (note thatZaesa is the surface
charge density of theath kind of ions). Most of the crucial

properties of the resulting system can be studied by holding
an ion on one of the surfaces and examining how other ions
respond to it[26,27]. To this end we put an ion of chargeZa

at the origin on surface 1, and calculate the electric potential
created by this ion and the surrounding ionic cloud of oppo-
site charge, denoted byC jsr d, wherej s=1,2d runs over sur-
faces atz=0 andh, respectively. In Debye-Hückel theory, the
electrostatic potential at positionr is then described by the
following differential equation(see Ref.[27] for a three-
dimensional analog):

¹2Csr d =5 −
4p

e
Zaedsr d, r , D,

2

l
Csr dfdszd + dsz− hdg, r . D,6 s2d

wherel−1=2p,BoaZa
2sa. The validity of this approach can

be checkeda posteriori—see the relevant discussion below
Fig. 4. The overall neutrality requiresl−1=2p,BsZ+1ds0.
Here we are particularly interested in the electric potential in
the plane of the surface:c1sr 'd;Csr ' ,z=0d and c2sr 'd
=Csr ' ,z=hd, wherer '=sx,yd. We find, for r .D,

c1sr 'd = Av11 −
l−1

2p
E dr '8 o

j=1

2

c jsr '8 dv1jsr '8 − r 'd,

c2sr 'd = Av12 −
l−1

2p
E dr '8 o

j=1

2

c jsr '8 dv2jsr '8 − r 'd, s3d

where vi j =1/Îr'
2 +hij

2 and hij =h if i Þ j and 0 otherwise.
Note here that the integration constantA is not automatically
set in the two-dimensional case, in contrast to the corre-
sponding three-dimensional case where it is fixed by Gauss’
law [26]. It proves useful to introduce a matixM defined by
matrix elements

Mijsk'd = di j +
e−hij k'

lk'

. s4d

In terms of this,c1sr 'd andc2sr 'd are given as follows:

c1sr 'd = AlE k'dk'

3
M11sk'dfM11sk'd − 1g − M12

2 sk'd
detfMsk'dg

J0sk'r'd,

c2sr 'd = AlE k'dk'

M12sk'd
detfMsk'dg

J0sk'r'd, s5d

where J0sxd is the zeroth-kind Bessel function of the first
kind. The constantA can be determined by imposing the
electric neutrality condition

Zae=
e

l
SE

D

`

dr'r'c1sr'd +E
0

`

dr'r'c2sr'dD . s6d

Note that the regionr',D is included in the second inte-
gral.
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Following the Debye charging process[26,27], the charge
fluctuation contribution to the free energy can be obtained. If
we considerc1 as a function ofr' ande, i.e.,c1sr' ,ed, then
the electrostatic free energy of each plate per unit area is
given as the following integral:

F
kBT

=
1

2p
S e

lZae
E

0

1 dz

z
c1sD,zed −

1

2Dl
D . s7d

Note thatc1 incorporates both interplate and in-plane charge
correlations and ish dependent. The free energy in Eq.(7)
enables us to systematically study the effect of ionic sizes on
the electrostatic attraction between the two plates. AsD
→0, this approach reproduces the known result of Ref.[12].

To study the effect of ionic sizes, we have computed the
free energy per unit area with reference toh=`: DF=Fshd
−Fsh=`d. Figure 1 showsDF (in units ofkBT) as a function
of the separationh for different values of the diameterD. We
have chosen the parametersT=300 K, e=80 (hence ,B
=7.1 Å), andl=1 Å (typical value for DNA or fully charged
bilayers). Ionic sizes have nontrivial effects onDF: For h
*5, DF gets more negative asD increases. A plausible rea-
son for this is that largerD results in a larger charge
polarity—the charge distribution is more heterogeneous—
and hence an enhanced attraction. To understand this more
clearly, consider a backbone charge on one of the plates(as-
sumed to be at the origin) and its ionic cloud of thickness
,l. Beyond the length scale,D+l, this plate will appear to
be overall neutral to charges on the other plate. Accordingly,
this charge(surrounded by the ionic cloud) can be more sen-
sitively felt by counterions on the other plate ifD is larger.
This may account for the stronger attraction between the
plates for largerD. (Similar arguments based on a zero-
temperature picture can be found in Ref.[16].)

On the other hand, for smallerh, larger D implies a
weaker attraction. At first glance, this is somewhat puzzling.

As it turns out, the small-h behavior reflects single-plate
properties. Ash→0, the two-plate system resembles a single
plate with a surface charge density twice that of each plate:
DFss ,h<0d<F1s2sd /2−F1ssd, where F1ssd;Fss ,
h=`d is the corresponding free energy of each plate[26]. For
point charges,F1 diverges(opposite charges can get arbi-
trarily close to each other). We find that, for D!l,
limh→0 DF→−skBT/4pl2dlogsl /Dd. For D@l, however,
limh→0 DFshd→−skBT/4pD2dlogsD /ld. This analysis im-
plies thatuDFsh<0du decreases asD increases and remains
finite as long asD.0, consistent with our results in Fig. 1.

For the more weakly charged case ofl=5 Å (see the
inset), however,DF is almost insensitive toD for large h,
i.e., h*5 Å. On the other hand, forh&5 Å, the effect of
nonzeroD becomes more pronounced:uDFsh,5 Å;D.0du
is smaller for largerD, as in the case ofl=1 Å.

To study theh dependence of the free energy(per area
plate), i.e., DF, we have displayeduDFu in units of kBT as a
function ofh in a log-log plot, for two different choices ofD
(see Fig. 2): D=0 (dashed line) and D=5 Å (circles). We
have chosenT=300 K ande=80. Figures 2(a) and 2(b) cor-
respond tol=1 and 5 Å, respectively. First consider the case
l=1 Å in (a). In this case, the free energy forD=0, DF0
;DFsD=0d, essentially follows the universal scaling behav-
ior DF`,−1/h2—the D=0 curve is essentially a straight
line with a slope of about 2 throughout the entire range of the
plot shù5 Åd. On the other hand, theh dependence ofDF
for D=5 Å is more complicated. The free energy is no
longer a straight line in the log-log plot, indicating the exis-
tence of multiple scaling regimes. To analyze this case, we
plot the differencedDF;DFsD=5 Åd−DF0 (triangles).
The 1/h2 dependence has been subtracted and the resulting
dDF should reflect ion sizes(and charge densities)—dDF
depends onD (and l). The slope of this curves becomes
steeper ash increases and thus does not assume a simple
scaling form. It, however, eventually becomes a constants
<2.9 as h→1000 Å. This implies that, for largeh, DF
,DF`+a3/hs, wherea3 is the coefficient of the 1/hs term.
This large-h behavior is consistent with Ref.[9] in which it
was shown thatP−P`,−A4/h4 in the limit of h→`, where
l andD dependence is implicitly included through the coef-
ficient A4. In this expansion or our free energy expansion, the
term depending onD (and l) decays faster thanDF`. To
understand this, first recall that long-wavelength fluctuations
lead to a long-ranged interaction; ifDF` arises fromk'

.0, then higher-order terms come from higherk'. In light
of this, it is not surprising thatDF` does not reflectl or D
dependence, which should be washed out at large-length
scales(see also Ref.[9]). A straight line tangent to this curve
at largeh sh=1000 Åd intersects theD=0 curve ath=hcr

<40 Å. This implies that the crossover from 1/h2 to 1/hs

takes place ath=hcr. For h,hcr, the free energy decays as
1/hs. Beyond this separation, however, it is dominated
by DF`.

Figure 2(b) shows the corresponding results forl=5 Å.
First note that, forh@5 Å, the D=0 curvesDF0d is essen-
tially the same as in the casel=1 Å; DF0 for h@l follows
a universal scaling law[9,12]. The main difference between
the cases(l=5 and 1 Å) is through theD-dependent term

FIG. 1. The electrostatic free energy of each plate per unit area,
DF, as a function of separationh for various choices ofD. We have
chosenT=300 K, e=80, andl=1 Å. For h*5 Å, the free energy
gets more negative as the ion sizeD increases. Forl=5 Å (see the
inset), however,DF is less sensitive toD as long ash*5 Å. As
h→0, however,DF in both cases remains finite as long asD.0
and is less attractive for largerD.
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dDF,1/hs and is twofold: For the largerl, the free energy
is less negative and the crossover takes place at a smaller
separationshcr<20 Åd. Consequently, the effect of nonzero
ionic sizes becomes more pronounced for a more highly
charged surface—the prefactor ofdDF is larger in magni-
tude for smallerl.

In light of our results in Fig. 2, we have carried out an
asymptotic analysis of the free energyDF (per plate area). In
this limit h@D@l, we find (in the Appendix)

DF
kBT

, −
zs3d
32p

F 1

h2 +
D

h3 ln
h

l
G , s8d

wherezsnd is the Riemann zeta function withzs3d<1.202.
The first term is the universal power lawDF`. On the other
hand, the second term arises from finite ionic sizes and
makes the free energy more negative. Strictly speaking, this
result is valid in the limith@D@l. Nevertheless, this illus-
trates the significance of finite ionic sizes: The main effect of

finite ionic sizes is to make charge distributions more hetero-
geneous, leading to a larger charge polarity(hence a stronger
attraction). It is worth comparing this with the corresponding
expansion forD=0: DF0,−sh−2−2lh−3d. The second term
in this equation is distinct from theD-dependent term in Eq.
(8). If the former is repulsive, the latter is attractive. Along
this line, it should be emphasized that the latter is analogous
to dDF,−1/hs in Fig. 2, in the sense that this makes the
attraction stronger and is dominant up tohcr, which is larger
for larger s0. On the other hand, the 1/h3 contribution for
D=0 becomes negligible for highly charged cases. Finally
our asymptotic result in Eq.(8), especially the second term,
is valid for h@D ,l; dDF approaches this term in this limit.
In intermediate regions, theD or l dependence ofdDF can
be more complicated than this implies.

In Fig. 3, we present electrostatic pressures(per unit area)
P obtained from a few different approaches: the universal
pressure, i.e.,P`,−kBTzs3d /8ph3 (thin solid line), the DH
theory of point charges[12] (dotted lines), our DH approach
for D.0 (thick solid lines), and the hypernetted chain
(HNC) approximations(diamonds) adopted from Fig. 3 of
Ref. [9]. Note that essentially the same model was used in
the HNC calcualtions: two overall neutral surfaces carrying
mobile cations and anions. In our conventionP
=−]s2DFd /]h. (RecallDF is the free energy per plate area.)
For our calculations, we have chosen the parameters consis-
tent with Ref.[9]: D=4 Å, T=300 K, e=80 (dielectric dis-
continuity is suppressed in these cases), (a) s0

−1=500 Å2 and
Z=1 sl=5.6 Åd, (b) s0

−1=200 Å2 andZ=1 sl=2.24 Å, and
(c) s0

−1=75 Å2 andZ=2 sl=0.56 Åd. In all these cases, both
the HNC results and ours are more attractive than theD=0
curves(by several factors at most) for the range shownsh
ù5 Åd. This clearly suggests that finite ionic sizes enhance
the attraction(unlessh is too small). For this reason, our
results forD=4 Å agree better with the HNC results than the
D=0 curves. The agreement is excellent forh*5 Å in (a)
and(b). The discrepancy between our and the HNC result for
s0

−1=75 Å2 at small separations can be attributed to the ap-
pearance of a short-range pressure in the latter, which our
DH approach suppressed. But note that, in a bilayer system
at room temperature, this high density is realized only when
the bilayer is fully charged. Ash increases, all these results
tend to collapse onto the asymptotic pressure as they should.
The results in the figure also show howD=0 curves ap-
proach the universal pressureP` as s0 increases. AlsoP`

appears to be favorably compared with both our result and
the HNC result fors0

−1=200 Å2. But this is a coincidence; if
we chose larger values ofD, then both our and the HNC
results would predict more attractive pressures, whileP`

remains the same.
To further study the consequence of finite ionic sizes, we

plot, in Fig. 4, the free energy per unit areaDF (in units of
kBT) as a function of l. We have chosenh=10 Å, T
=300 K, ande=80. As shown in the figure,DF is sensitive
to l and is more attractive for smalll (corresponding to high
s0 or Z). These results are consistent with numerical data
[24,25] but deviate from the corresponding results for point
charges(the dotted line), which is roughly independent ofl.
The results for point charges are somewhat different from the

FIG. 2. Log-log plot ofDF, i.e., the electrostatic free energy of
each plate per unit area as a function of separationh, for (a) l
=1 Å and(b) l=5 Å. We have chosenT=300 K ande=80. (a) The
free energy curve forD=0 sDF0d is a straight line with a slope 2,
confirming the known universal result:DF`,−kBT/h2. The free
energy curve forD=5 Å is no longer a straight line, indicating the
existence of multiple scaling regimes: The slope ofdDF;DFsD
=5 Åd−DF0 approachess<2.9 ash→`. Our analysis suggests
that the free energy is dominated bydDF,1/hs for h&hcr

<40 Å and crosses over toDF` at h<hcr. (b) For a largerl
=5 Å, the crossover takes place at a smaller value ofh: hcr

<20 Å. Note that the free energy forD=0 in this case is essentially
the same as in the previous case(a) for h@l, as expected.
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l-independentDF`; the latter is simply the large-h limit of
the former. Note here that the difference between theD=0
pressure and the results forDÞ0 in Fig. 4 solely comes from
nonzero ionic sizes, since the two are otherwise identical.
This is intriguing since it implies that short-length-scale
properties, i.e., ionic sizes, qualitatively modifyl depen-
dence of DF (unless h/l is too large). For D=0, the
asymptotic limit, characterized byP`, is realized ifh@l.
Our results in Fig. 2, however, indicate that forD.0 a new
length scale comes in:hcr, which is typically much larger

than D (see the relevant discussion around Fig. 2). In this
case, the asymptotic region is reduced down toh@hcr. For
h&hcr, the electrostatic pressure is sensitive tol as evi-
denced in Fig. 4; it is more sensitive tol and larger in
magnitude for largerD (for h=10 Å).

Our DH approach amounts to keeping charge fluctuations
at the Gaussian level, leaving out strong charge fluctuations
at short length scales as implied by oscillatory charge corre-
lations at low temperatures[20]. In a linearized approach,
some of this effect can be, in principle, incorporated by al-
lowing the formation of ion pairs between backbone charges
and counterions as much the same way as in the two state
model for counterions. The study of the competition between
long-wavelength fluctuations and local ordering is a non-
trivial one as it depends on separations[20] as well. More-
over, it has been shown that out-of-plane charge fluctuations
are important and thus the two-dimensional DH approach
inevitably underestimates the negative pressure[13,23]. In
addition, it has been shown that surface-charge discreteness
can lower the electrostatic pressureP [14], making it more
attractive. Note that this effect arises from enhanced counter-
ion condensation and is distinct from the enhanced attraction
(for largeD) in our case. In this regard, the spatial distribu-
tion of counterions will further complicateP. Hence further
consideration is certainly warranted. Nevertheless our results
can be used to check the self-consistency of our DH ap-
proachwithin the two-state model of counterions. In the case
of physical interest, i.e.,h*D.5–10 Å, the magnitude of
the h-dependent correlation energy is smaller thankBT. In
that case, the DH approach ought to be good. The agreement
of our results with those adopted from Ref.[9] is hence not
accidental.

III. SUMMARY

In summary, we have developed a theoretical formalism
to account for the interplay between ionic sizes and the elec-
trostatic attraction between like charged bilayers. To this end,
we have modeled ions(both lipid charges and condensed

FIG. 3. Log-log plot of the electrostatic pressureP per unit area
as a function of separationh, for (a) s0

−1=500 Å2, Z=1, (b) s0
−1

=200 Å2, Z=1, and(c) s0
−1=75 Å2, Z=2. In all cases,T=300 K

and e=80. Both our results[DH sD=4 Åd] and the hypernetted
chain(HNC) approximations forD=4 Å from Ref. [9] (diamonds)
are more attractive than the corresponding DH results forD=0; the
effect of nonzero ionic sizes is more pronounced for largers0. As
h→`, all these results tend to collapse onto the limiting pressure
P`=Psh→`d,−kBT/h3. The agreement between the HNC results
and ours is excellent except forP at h.5 Å in (c).

FIG. 4. The electrostatic free energy per unit area(in units of
kBT) as a function ofl. We have chosenh=10 Å, T=300 K, and
e=80. As shown in the figure,DF is sensitive tol and is more
attractive for smalll (corresponding to highly charged case).
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counterions) as charged hard spheres of diameterD as in the
restricted primitive model of a simple ionic fluid. Using a
(two-dimensional) Debye-Hückel approach to this system,
we have examined how nonzero ionic sizes are intertwined
with the attraction. The nonzero ionic size can qualitatively
modify the attraction. In the case of physical interestsh
*5 Åd, it enhances the attraction. A plausible reason for this
is that the in-plane charge distribution becomes more hetero-
geneous asD increases, resulting in a larger charge polarity
and hence an enhanced attraction. Also the attraction gets
stronger as the surface charge density(in units of −e) s0
increases, consistent with known results[9,16,24]. This ob-
servation is interesting, as it implies that the ionic size influ-
encess0 dependence of the attraction. In other words, these
two effects(ionic sizes ands0 dependence of the attraction)
are coupled to each other—the attraction is more sensitive to
s0 for larger D. Our results are in accord with the long-
standing observation of enhanced attractions for high charge
densities or large valency and also predicts more realistic
results for the pressure that remains finite ash→0. The main
advantage of our approach is that it allows us to systemati-
cally study the correlation attraction, without relying on ad-
ditional approximations/assumptions in addition to lineariza-
tion that might obscure the essential physics of correlation
attractions.
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APPENDIX

In this appendix, we present an asymptotic result for the
free energy(per plate area), DF=Fshd−Fsh=`d, in the limit
of h@D@l. To this end, we first writec1sr'd explicitly as
an integral with respect tok'; if we define

c̄1sr 'd

=E k'dk'

M11sk'dfM11sk'd − 1g − M12
2 sk'd

detfMsk'dg
J0sk'r'd,

c̄2sr 'd =E k'dk'

M12sk'd
detfMsk'dg

J0sk'r'd, sA1d

we have
c1sr 'd = Alc̄1sr 'd,

c2sr 'd = Alc̄2sr 'd. sA2d

The constantA, as determined by Eq.(6), is

A =
Zae

e

1

E
D

`

dr'r'c̄1sr'd +E
0

`

dr'r'c̄2sr'd
. sA3d

To carry out ther integrals in the denominator, we note that

E
D

`

dr'r'c̄1sr'd +E
0

`

dr'r'c̄2sr'd

= −E
0

D

dr'r'c̄1sr'd +E
0

`

dr'r'c̄1sr'd

+E
0

`

dr'r'c̄2sr'd

=E
0

`

dr'r'fc̄1sr'd + c̄2sr'dg −E
0

D

dr'r'c̄1sr'd. sA4d

Using this relation[30]

E
0

`

J0sk'r'dr'dr' =
dsk'd

k'

, sA5d

wheredsxd is the Diracd function, we can simplify the first
integral in Eq.(A4) as

E
0

`

dr'r'fc̄1sr'd + c̄2sr'dg

=E
0

`

dk'dsk'dF1 −
1

M11sk'd + M12sk'dG
= 1. sA6d

If we note that

E
0

D

dr'r'k'J0sk'r'd = DJ1sk'Dd, sA7d

whereJ1sxd is the first-order Bessel function of the first kind,
we can rewrite the second integral in Eq.(A4) as

E
0

D

dr'r'c̄1sr'd

= DE
0

`

dk'

M11sk'dfM11sk'd − 1g − M12
2 sk'd

detfMsk'dg
J1sk'Dd.

sA8d

If we use Eqs.(A6) and (A8) in Eq. (A3), we have

A =
Zae

e

1

1 − DE
0

`

dk'

M11sk'dfM11sk'd − 1g − M12
2 sk'd

detfMsk'dg
J1sk'Dd

. sA9d

This, when combined with Eq.(5), leads to
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c1sr'd =
Zael

«

E
0

`

k'dk'

M11sk'dfM11sk'd − 1g − M12
2 sk'd

detfMsk'dg
J0sk'r'd

1 − DE
0

`

dk'

M11sk'dfM11sk'd − 1g − M12
2 sk'd

detfMsk'dg
J1sk'Dd

. sA10d

Now c1sD ,zed= uc1sr =D ,edue→ez. SubstitutingcsD ,zed obtained this way into Eq.(7), we have

F

kBT

=
1

2p5E0

1* dz

z

E
0

`

k'dk'3M11sk'dfM11sk'd − 1g − M12
2 sk'd

detfMsk'dg
4J0sk'Dd

1 − DE
0

`

dk'3M11sk'dfM11sk'd − 1g − M12
2 sk'd

detfMsk'dg
4J1sk'Dd*

e→ez

−
1

2Dl6 . sA11d

For later convenience, we rewrite the term in square brackets as

FM11sk'dfM11sk'd − 1g − M12
2 sk'd

detfMsk'dg G =
1

1 + lk'

−
M12

2 sk'd
M11sk'ddetfMsk'dg

. sA12d

Note that the first term ish independent and that the coupling between the two plates enters throughM12sk'd—as expected,
M12sk'd→0 ash→`. Equation(A11) becomes

F
kBT

=
1

2p5E0

1 *dz

z

E
0

`

k'dk'F 1

1 + lk'

−
M12

2 sk'd
M11sk'ddetfMsk'dgGJ0sk'Dd

1 − DE
0

`

dk'F 1

1 + lk'

−
M12

2 sk'd
M11sk'ddetfMsk'dgGJ1sk'Dd*

e→ez

−
1

2Dl6 . sA13d

Following Ref.[26], we find

E
0

`

k'dk'

1

1 + lk'/z2J0sk'Dd =
z2

lD
t0SD

l
z2D , sA14d

1 − DE
0

`

dk'

1

1 + lk'/z2J1sk'Dd = −
Dz2

l
t1SD

l
z2D , sA15d

where

tnsxd = 1 −
px1−n

2
fHnsxd − Ynsxdg, sA16d

Hnsxd is the Struve function, andYnsxd is the Bessel function of the second kind. If we substitute Eqs.(A14) and (A15) into
Eq. (A13), we obtain

F
kBT

=
1

2p5E0

1 dz

z

z2

lD
t0SD

l
z2D −E

0

`

k'dk'

M12
2 sk'd

M11sk'ddetfMsk'dg
J0sk'Dd

−
Dz2

l
t1SD

l
z2D + DE

0

`

dk'

M12
2 sk'd

M11sk'ddetfMsk'dg
J1sk'Dd

−
1

2Dl6 . sA17d

From this we obtain,DF=Fshd−Fsh=`d,

DF
kBT

=
1

2p
E

0

1 dz

z 5
z2

lD
t0SD

l
z2D −E

0

`

k'dk'

M12
2 sk'd

M11sk'ddetfMsk'dg
J0sk'Dd

−
Dz2

l
t1SD

l
z2D + DE

0

`

dk'

M12
2 sk'd

M11sk'ddetfMsk'dg
J1sk'Dd

−

z2

lD
t0SD

l
z2D

S−
Dz2

l
Dt1SD

l
z2D6 . sA18d
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We find that, ifh@l,

UDE
0

`

dk'

M12
2 sk'd

M11sk'ddetfMsk'dg
J1sk'DdU

! UDz2

l
t1SD

l
z2DU .

This allows us to expand the denominator of the first term in
Eq. (A18) in powers of the ratio

DE
0

`

dk'

M12
2 sk'd

M11sk'ddetfMsk'dg
J1sk'Dd/FDz2

l
t1SD

l
z2DG .

To second order in the ratio, we find

DF
kBT

=
1

2p
E

0

1 dz

z 5E0

`

k'dk'

M12
2 sk'd

M11sk'ddetfMsk'dg
J0sk'Dd

Dz2

l
t1SD

l
z2D

−

z2

l
t0SD

l
z2DE

0

`

dk'

M12
2 sk'd

M11sk'ddetfMsk'dg
J1sk'Dd

FDz2

l
t1SD

l
z2DG2 6 .

sA19d

In the limit of h@D andh@l, thez integral in Eq.(A19) is
mainly determined byz,Îl /h, which is close to 0. In other
words, the main contribution comes fromDz2/l,D /h!1.
This allows us to use the small-x expansions of the two func-
tions t0sxd andt1sxd:

t0sxd , 1,

t1sxd , −
1

x
.

Accordingly, Eq.(A19) becomes

DF
kBT

=
1

2p
E

0

1 dz

z H−E
0

`

k'dk'

M12
2 sk'd

M11sk'ddetfMsk'dg
J0sk'Dd

−
z2

l
E

0

`

dk'

M12
2 sk'd

M11sk'ddetfMsk'dg
J1sk'DdJ . sA20d

The z integral in this equation can be carried out without
further approximations:

DF
kBT

=
1

8p
E

0

`

k'dk' lnF1 −
e−2hk'

s1 + lk'd2GJ0sk'Dd

+
1

8p
E

0

`

dk'

k'J1sk'Dd
1 − e2hk'

He2hk' lnF1 −
e−2hk'

s1 + lk'd2G
+ ehk' lnFehk's1 + lk'd − 1

ehk's1 + lk'd + 1
G + 2 lnS1 +

1

lk'

DJ .

sA21d

The free energy can now be expanded in powers of 1/h.
The lowest term scales as 1/h2 and the coefficient of this,a2,
can be obtained by multiplyingDF by h2 and taking the limit
of h→`. To this end, we substitutek'= t /h in Eq. (A21); the
first integral can then be calculated as follows:

lim
h→`

h2E
0

`

k'dk' lnF1 −
e−2hk'

s1 + lk'd2GJ0sk'Dd

= lim
h→`

E
0

`

t dt lnF1 −
e−2t

s1 + lt/hd2GJ0SDt

h
D

=E
0

`

t dt lns1 − e−2td = −
zs3d

4
. sA22d

Similarly, we can geta3, the coefficient of the next leading
term, by takingh→` in h3sDF−a2h

−2d. We find, forh@D
andh@l,

DF
kBT

, −
zs3d
32p

F 1

h2 −
2l

h3 +
D

h3Sln
h

l
− CDG , sA23d

where zsnd is the zeta function withzs3d<1.202 andC
=1.707. The first term is the universal power law, indepen-
dent of surface charge densities and ionic sizes. The other
two terms are the next leading corrections toDF. The third
term arises from finite ionic sizes. It remains negative and
thus makes the pressure more attactive as long ash/l@1.
For D /l@1, this term dominates the second term. In the
limit h@D@l, Eq. (A23) reduces to Eq.(8) used in the
main text.
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